Metal-ceramic laminate composite magnetoelectric gradiometer.

نویسندگان

  • V Bedekar
  • M I Bichurin
  • S N Ivanov
  • Y J Pukinski
  • S Priya
چکیده

Gradiometer resembles in functionality a magnetic field sensor where it measures the magnetic field gradient and its sensitivity is determined by the ability to quantify differential voltage change with respect to a reference value. Magnetoelectric (ME) gradiometer designed in this study is based upon the nickel (Ni)-Pb(Zr,Ti)O(3) (PZT) composites and utilizes the ring-dot piezoelectric transformer structure working near the resonance as the basis. The samples had the ring-dot electrode pattern printed on the top surface of PZT, where ring acts as the input while dot acts as the output. There is an insulation gap between the input and output section of 1.2 mm. The generated magnetic field due to converse ME effect interacts with the external applied magnetic field producing flux gradient, which is detected through the frequency shift and output voltage change in gradiometer structure. The measurements of output voltage dependence on applied magnetic field clearly illustrate that the proposed design can provide high sensitivity and bandwidth.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Theory Analysis on Magnetoelectric Voltage Coefficients of the Terfoneol-D/PZT Composite Transducer

The magnetoelectric response of magnetostrictive/piezoelectric laminate composites has been investigated. Based on the piezoelectric and piezomagnetic constitutive equations, and motion equation for the composite plate, the magnetoelectric equivalent circuit has been derived, and the magnetoelectric coefficients predicted. Prototype devices of, as an application example, Terfenol-D/PZT composit...

متن کامل

A Room Temperature Ultrasensitive Magnetoelectric Susceptometer for Quantitative Tissue Iron Detection

Iron is a trace mineral that plays a vital role in the human body. However, absorbing and accumulating excessive iron in body organs (iron overload) can damage or even destroy an organ. Even after many decades of research, progress on the development of noninvasive and low-cost tissue iron detection methods is very limited. Here we report a recent advance in a room-temperature ultrasensitive bi...

متن کامل

Flexural and Impact Properties of Stainless Steel based Glass Fibre Reinforced Fibre Metal Laminate under Hygrothermal Conditioning

Fibre metal laminates (FMLs) have appeared as the most suitable materials for shipbuilding, aeronautical and aerospace applications due to their superior mechanical properties over traditional materials. In this paper, degradation in flexural and impact properties of glass fibre/epoxy composite (GF/E composite) and stainless steel glass fibre/epoxy fibre metal laminate (SS FML) due to hygrother...

متن کامل

Effect of the Magnetostrictive Layer on Magnetoelectric Properties in Lead Zirconate Titanate/Terfenol-D Laminate Composites

Magnetoelectric laminate composites of piezoelectric/magnetostrictive materials were prepared by stacking and bonding together a PZT disk and two layers of Terfenol-D disks with different directions of magnetostriction. These composites were studied to investigate (i) dependence on the magnetostriction direction of the Terfenol-D disk and (ii) dependence on the direction of the applied ac magne...

متن کامل

Equivalent Circuit Model of Low-Frequency Magnetoelectric Effect in Disk-Type Terfenol-D/PZT Laminate Composites Considering a New Interface Coupling Factor

This paper describes the modeling of magnetoelectric (ME) effects for disk-type Terfenol-D (Tb0.3Dy0.7Fe1.92)/PZT (Pb(Zr,Ti)O₃) laminate composite at low frequency by combining the advantages of the static elastic model and the equivalent circuit model, aiming at providing a guidance for the design and fabrication of the sensors based on magnetoelectric laminate composite. Considering that the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Review of scientific instruments

دوره 81 3  شماره 

صفحات  -

تاریخ انتشار 2010